Magnetic-resonance-imaging-coupled broadband near-infrared tomography system for small animal brain studies.
نویسندگان
چکیده
A novel magnetic-resonance-coupled broadband near-infrared (NIR) tomography system for small animal brain studies is described. Several features of the image formation approach are new in NIR tomography and represent major advances in the path to recovering high-resolution hemoglobin and oxygen saturation images of tissue. The NIR data were broadband and continuous wave and were used along with a second-derivative-based estimation of the path length from water absorption. The path length estimation from water was then used along with the attenuation spectrum to recover absorption and reduced scattering coefficient images at multiple wavelengths and then to recover images of total hemoglobin and oxygen saturation. Going beyond these basics of NIR tomography, software has been developed to allow inclusion of structures derived from MR imaging (MRI) for the external and internal tissue boundaries, thereby improving the accuracy and spatial resolution of the properties in each tissue type. The system has been validated in both tissue-simulating phantoms, with 10% accuracy observed, and in a rat cranium imaging experiment. The latter experiment used variation in inspired oxygen (FiO2) to vary the observed hemoglobin and oxygen saturation images. Quantitative agreement was observed between the changes in deoxyhemoglobin values derived from NIR and the changes predicted with blood-oxygen-level-dependent (BOLD) MRI. This system represents the initial stage in what will likely be a larger role for NIR tomography, coupled to MRI, and illustrates that the technological challenges of using continuous-wave broadband data and inclusion of a priori structural information can be met with careful phantom studies.
منابع مشابه
Development of an Advanced Optical Coherence Tomography System for Radiation Dosimetry
Introduction: According to the literature, optical coherence tomography (OCT) can be used measure radiation absorbed dose. This study was carried out to design a computed tomography system for the calculation of absorbed dose and optimization of dose delivery in radiotherapy using gel dosimeters. Material and Methods: An advanced charge-coupled device based OCT system was developed in laborator...
متن کاملBrain Single Photon Emission Computed Tomography Scan (SPECT) and Functional MRI in Systemic Lupus Erythematosus Patients with Cognitive Dysfunction: A Systematic Review
Objective(s): Systemic lupus erythematosus (SLE) is an autoimmune disease with a wide range of clinical manifestations. Cognitive dysfunction is one of the manifestations that could present prior to the emergence of any other neuropsychiatric involvements in SLE. Cognitive dysfunction is a subtle condition occurring with ahigh frequency. However, there is no data on the correlation of cognitive...
متن کاملCongruent MRI and near-infrared spectroscopy for functional and structural imaging of tumors.
We present a combined near-infrared diffuse optical spectroscopy (DOS) and Magnetic Resonance Imaging (MRI) system for the study of animal model tumors. A combined broadband steady-state and frequency domain optical spectroscopy apparatus was integrated with the MRI. The physiological properties of tissue rendered by MRI, including vascular volume fraction and water, were compared with chromoph...
متن کاملPseudo-CT Generation from Magnetic Resonance Imaging by fuzzy look up table algorithm
Introduction: Despite growing interest in the use of magnetic resonance imaging (MRI) in the external radiotherapy design process (RT), Computer Tomography (CT) remains a gold standard and is regarded as a basic imaging modality in radiotherapy. MRI shows the high contrast in soft tissues without any radiation exposure to patients. As a result, MRI is used in functional tissue ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied optics
دوره 44 11 شماره
صفحات -
تاریخ انتشار 2005